3.84 \(\int \frac{x^2}{a x+b x^3+c x^5} \, dx\)

Optimal. Leaf size=36 \[ -\frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}} \]

[Out]

-(ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]]/Sqrt[b^2 - 4*a*c])

________________________________________________________________________________________

Rubi [A]  time = 0.0426447, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1585, 1107, 618, 206} \[ -\frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a*x + b*x^3 + c*x^5),x]

[Out]

-(ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]]/Sqrt[b^2 - 4*a*c])

Rule 1585

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rule 1107

Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[(a + b*x + c*x^2)^p, x],
 x, x^2], x] /; FreeQ[{a, b, c, p}, x]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{a x+b x^3+c x^5} \, dx &=\int \frac{x}{a+b x^2+c x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )\\ &=-\operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )\\ &=-\frac{\tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\sqrt{b^2-4 a c}}\\ \end{align*}

Mathematica [A]  time = 0.0093676, size = 39, normalized size = 1.08 \[ \frac{\tan ^{-1}\left (\frac{b+2 c x^2}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a*x + b*x^3 + c*x^5),x]

[Out]

ArcTan[(b + 2*c*x^2)/Sqrt[-b^2 + 4*a*c]]/Sqrt[-b^2 + 4*a*c]

________________________________________________________________________________________

Maple [A]  time = 0., size = 36, normalized size = 1. \begin{align*}{\arctan \left ({(2\,c{x}^{2}+b){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \right ){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^5+b*x^3+a*x),x)

[Out]

1/(4*a*c-b^2)^(1/2)*arctan((2*c*x^2+b)/(4*a*c-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{c x^{5} + b x^{3} + a x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^5+b*x^3+a*x),x, algorithm="maxima")

[Out]

integrate(x^2/(c*x^5 + b*x^3 + a*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.53897, size = 290, normalized size = 8.06 \begin{align*} \left [\frac{\log \left (\frac{2 \, c^{2} x^{4} + 2 \, b c x^{2} + b^{2} - 2 \, a c -{\left (2 \, c x^{2} + b\right )} \sqrt{b^{2} - 4 \, a c}}{c x^{4} + b x^{2} + a}\right )}{2 \, \sqrt{b^{2} - 4 \, a c}}, -\frac{\sqrt{-b^{2} + 4 \, a c} \arctan \left (-\frac{{\left (2 \, c x^{2} + b\right )} \sqrt{-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right )}{b^{2} - 4 \, a c}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^5+b*x^3+a*x),x, algorithm="fricas")

[Out]

[1/2*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c - (2*c*x^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4 + b*x^2 + a))/sqrt(b^2
 - 4*a*c), -sqrt(-b^2 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c))/(b^2 - 4*a*c)]

________________________________________________________________________________________

Sympy [B]  time = 0.444931, size = 131, normalized size = 3.64 \begin{align*} - \frac{\sqrt{- \frac{1}{4 a c - b^{2}}} \log{\left (x^{2} + \frac{- 4 a c \sqrt{- \frac{1}{4 a c - b^{2}}} + b^{2} \sqrt{- \frac{1}{4 a c - b^{2}}} + b}{2 c} \right )}}{2} + \frac{\sqrt{- \frac{1}{4 a c - b^{2}}} \log{\left (x^{2} + \frac{4 a c \sqrt{- \frac{1}{4 a c - b^{2}}} - b^{2} \sqrt{- \frac{1}{4 a c - b^{2}}} + b}{2 c} \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**5+b*x**3+a*x),x)

[Out]

-sqrt(-1/(4*a*c - b**2))*log(x**2 + (-4*a*c*sqrt(-1/(4*a*c - b**2)) + b**2*sqrt(-1/(4*a*c - b**2)) + b)/(2*c))
/2 + sqrt(-1/(4*a*c - b**2))*log(x**2 + (4*a*c*sqrt(-1/(4*a*c - b**2)) - b**2*sqrt(-1/(4*a*c - b**2)) + b)/(2*
c))/2

________________________________________________________________________________________

Giac [A]  time = 1.11572, size = 47, normalized size = 1.31 \begin{align*} \frac{\arctan \left (\frac{2 \, c x^{2} + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{\sqrt{-b^{2} + 4 \, a c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^5+b*x^3+a*x),x, algorithm="giac")

[Out]

arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/sqrt(-b^2 + 4*a*c)